Iowa's Jordan Aquifer: Current Status and Future Conditions

Bob Libra
State Geologist of Iowa
Iowa DNR - Geological Survey

Cambrian, Jordan Sandstone
McGregor, Clayton Co.
Managing our Water Resources

• What Are Our Water Resources?
• How Much Water Do We Have?
• How Much Water Do We - Will We - Use?
• Is it Sustainable for the Long Term?
Need for a Water Resource Management Program

- Characterization of our Major Aquifers and Watersheds out of date.
- Energy - Related Water Impacts
- Climate Change and Water Impacts
- Allocation and Planning Beyond One Permit at a Time.
Water Management—A Comprehensive Program

- Updated Assessment of Current Demand:

- Resume and Enhance Groundwater Level Monitoring:
 -- Regional Aquifer Trends and Local Hotspots.

- Add and Maintain Additional Stream Gages:
 -- Gages needed for accurate surface water allocation, reservoir studies.

- Updated Assessments of Aquifers—Geologic and Hydrologic Properties:
 -- Last Major Efforts in the 1960’s - 1980’s.

- Upgraded Assessment Techniques:
 -- Need to Utilize Modern Modeling and Predictive Analysis.

- More Thorough Hydrogeologic Reviews of Permits:

- Update the State Water Plan—The Road Map for Water Use:
 -- Last update in 1985. Do our rules, regs, policies need reworking?
Water Resource Management for Long-Term Sustainability

Original Water Resource Management Program Proposal -- $1.65 M annually
DNR Strategy -- $2M for FY10
Legislative Appropriation -- $480K FY08 ($495K FY's 09 and 10)
Water Allocation Permit Fees - up to $500K annually
Main Activities

- Developed aquifer characterization methodology.
- Data Mining – Characterization of Dakota Sandstone and Jordan Aquifers.
- Predictive Models developed for Dakota and Jordan Aquifers.
What is the Jordan Aquifer?

Cambrian, Jordan Sandstone
McGregor, Clayton Co.
What is the Jordan Aquifer?
Analysis and Interpretation

<table>
<thead>
<tr>
<th>Form No. 79—l stock and for sale by Rice-Martin Co., Tuba, W-14425</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATE</td>
</tr>
<tr>
<td>Iowa</td>
</tr>
<tr>
<td>STATE</td>
</tr>
<tr>
<td>NAME</td>
</tr>
<tr>
<td>Sec. 30</td>
</tr>
<tr>
<td>COMPLETED</td>
</tr>
<tr>
<td>Feb 9</td>
</tr>
<tr>
<td>LOGGED</td>
</tr>
<tr>
<td>5-12-70</td>
</tr>
<tr>
<td>REMARKS</td>
</tr>
<tr>
<td>Rotary tools</td>
</tr>
<tr>
<td>Yield</td>
</tr>
<tr>
<td>20 gpm</td>
</tr>
<tr>
<td>Source</td>
</tr>
<tr>
<td>270-310</td>
</tr>
</tbody>
</table>

10' Samples

<table>
<thead>
<tr>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>250</td>
</tr>
<tr>
<td>300</td>
</tr>
</tbody>
</table>

Notes:
- Analysis and Interpretation
- Data entry, analysis, getting in the ground, it's always... determined all growth.
- Growth, root, root, root, root
- Till, pate, pate, pate, pate, pate
Water Withdrawals, Aquifer Tests, GW Quality Data....

Locations, Analysis, Specific Sources
Geology, Aquifer Properties, Groundwater Elevations, Recharge, Pumping History...........all go in here:
Jordan Aquifer: Long Term Use - "Memory" - Pumping History Needed
USGS Model Efforts late 70's - early 80's archived older data
Locations of Water Use Permits for Wells tapping the Jordan Aquifer
The Jordan is a "Confined Aquifer"
What has occurred since we started using the Aquifer?
Pumping results in lowering or “drawdown” of the pressure surface.
Sustainability Criteria:
IAC 567 Chapter 52.4(3)c.

Two hundred (200) foot limit on the decline of groundwater piezometric levels. The maximum collective long-term decline in groundwater piezometric levels in the Cambrian Jordan Sandstone Aquifer in any high use area will not be permitted to exceed 200 feet from the 1977 baseline as determined from available records of the department’s Iowa Geological Survey (IGS).
Drawdown from Horick and Steinhilber (1978) Compared to 2007 Simulated
Predictive Simulations
Drawdown based on Horick and Steinhilber (1978)
potentiometric map

2009-2029
25% Increase in Pumping Rates 2009-2029
50% Increase in Pumping Rates 2009-2029

Additional Drawdown
- <0 ft
- 0-20 ft
- 20-40 ft
- 40-60 ft
- 60-80 ft
- 80-100 ft
- 100-120 ft
- 120-140 ft
- 140-160 ft
- 160-180 ft
- 180-200 ft
- >200 ft
- Manson

0 25 50 100 Miles

N
Modeling Needs Projections of Future / Planned Use

Example: City of Marion
Predicted Drawdown in 2029 Using Horick (1978) as a Baseline Pumping Rates Based on City's 30 year Water Plan
Sustainability Criteria:

--One allowable drawdown for the entire Aquifer (i.e., 200 feet from 1977?)

--Percent of original “Pressure Head”?

--MN DNR uses Pressure (Available) Head approach. At 50% loss, submit a plan to assure Available Head will not fall below 25% of original.

--MN DNR applies this at the well, not in a mapped zone around it.
Percent of Original Available Head 2029
(50% increase in Water usage)
Consequences?

• **Quantity and Production Capability**: How much should be reserved for the long term?

• What do we mean by **long term**? Life of investments? 100 years? “Forever”?

• **Pumping Costs**: Estimated increase of $25K annually for a 500 GPM well with 200 feet of additional drawdown.

• **Quality Impacts**: Vertical and Lateral GW Movement are a question of concern.
Jordan Status – Future Conditions

• Pressure Surface - Well Levels have declined 150 ft over a broad area of Central IA, and over 250 ft locally.

• With no increase in use, Well Levels will exceed the 200 ft drawdown limit locally.

• With a 50% increase in use, Declines of over 450 ft will occur locally, about $\frac{1}{2}$ of the original available head.

• Quality Impacts a concern that needs to be addressed.
Reports, Data, Model Input Files are Available on the IGWS Website at:

- http://www.igsb.uiowa.edu/

Additional Information on Water Quantity/Supply Issues is Available at:

FY10: West Nishnabotna Alluvial Aquifer

- GW-SW Interactions come into play
- Drought - Climate Impacts
- Water Quality - Source Water
Additional Program Needs

• Expand GW level network
• Build and maintain stream gages
• Create Water Resource database and web applications
• Input/Refinement of Future Use Estimates
• Additional characterization support needed
 - 3D Aquifer mapping (alluvial systems)
 - Quality - Pumping relationships
 - Geologic characterization
Goal: Break the Cycle
Water Resource Sustainability:

Assuring plentiful, clean water for community, business, and ecological needs, today and into the future.

Questions?

Bob Libra, State Geologist
Mike Gannon, Hydrogeologist
DNR -- Iowa Geological Survey
319-335-1575
robert.libra@dnr.iowa.gov

http://www.igsb.uiowa.edu/